Join us on YugabyteDB Community Slack
Star us on
Get Started
Slack
GitHub
Get Started
v2.7 (latest) v2.4 (stable) v2.2 (earlier version) v2.1 (earlier version) v2.0 (earlier version) v1.3 (earlier version)
  • YUGABYTEDB CORE
    • Quick start
      • 1. Install YugabyteDB
      • 2. Create a local cluster
      • 3. Explore distributed SQL
      • 4. Build an application
        • Java
        • NodeJS
        • Go
        • Python
        • Ruby
        • C#
        • PHP
        • C++
        • C
        • Scala
    • Explore features
      • YSQL vs PostgreSQL
        • Schemas and Tables
        • Data Types
        • Data Manipulation
        • Queries and Joins
        • Expressions and Operators
        • Cursors
        • Stored Procedures
        • Triggers
        • Table Partitioning
        • Tablespaces
        • Views
      • Fault tolerance
      • Horizontal Scalability
        • Scaling Transactions
        • Sharding Data
      • Transactions
        • Distributed Transactions
        • Isolation Levels
        • Explicit Locking
      • JSON Support
      • Multi-Region Deployments
        • Sync replication (3+ regions)
        • Async Replication (2+ regions)
        • Row-Level Geo-Partitioning
      • Query Tuning
        • Analyzing Queries with EXPLAIN
        • Viewing live queries with pg_stat_activity
        • Optimizing YSQL queries using pg_hint_plan
      • Follower reads
      • Colocated tables
      • Change data capture (CDC)
      • Extensions
      • Observability
        • Prometheus Integration
      • Security
    • Develop
      • Learn app development
        • 1. SQL vs NoSQL
        • 2. Data modeling
        • 3. Data types
        • 4. ACID transactions
        • 5. Aggregations
        • 6. Batch operations
        • 7. Date and time
        • 8. Strings and text
        • 9. TTL for data expiration
      • Ecosystem integrations
        • Apache Kafka
        • Spring Framework
        • Apache Spark
        • JanusGraph
        • KairosDB
        • Hasura
        • Presto
        • Metabase
      • Build GraphQL apps
        • Hasura
        • Prisma
      • Real-world examples
        • E-Commerce app
        • IoT fleet management
        • Retail Analytics
      • Explore sample apps
      • Best practices
    • Migrate
      • Migration process overview
      • Migrate from PostgreSQL
        • Convert a PostgreSQL schema
        • Migrate a PostgreSQL application
        • Export PostgreSQL data
        • Prepare a cluster
        • Import PostgreSQL data
        • Verify Migration
    • Deploy
      • Deployment checklist
      • Manual deployment
        • 1. System configuration
        • 2. Install software
        • 3. Start YB-Masters
        • 4. Start YB-TServers
        • 5. Verify deployment
      • Kubernetes
        • Single-zone
          • Open Source
          • Amazon EKS
          • Google Kubernetes Engine
          • Azure Kubernetes Service
        • Multi-zone
          • Amazon EKS
          • Google Kubernetes Engine
        • Multi-cluster
          • Google Kubernetes Engine
        • Best practices
        • Connect Clients
      • Docker
      • Public clouds
        • Amazon Web Services
        • Google Cloud Platform
        • Microsoft Azure
      • Multi-DC deployments
        • Three+ data center (3DC)
        • Two data center (2DC)
        • Read replica clusters
      • Change data capture (CDC)
        • CDC to Kafka
    • Benchmark
      • TPC-C
      • sysbench
      • YCSB
      • Key-value workload
      • Large datasets
      • Scalability
        • Scaling queries
      • Resilience
        • Jepsen testing
      • Performance Troubleshooting
    • Secure
      • Security checklist
      • Enable Authentication
        • Enable User Authentication
        • Configure ysql_hba_conf_csv
      • Authentication Methods
        • Password Authentication
        • LDAP Authentication
        • Host-Based Authentication
        • Trust Authentication
      • Role-Based Access Control
        • Overview
        • Manage Users and Roles
        • Grant Privileges
        • Row-Level Security (RLS)
        • Column-Level Security
      • Encryption in Transit
        • Create server certificates
        • Enable server-to-server encryption
        • Enable client-to-server encryption
        • Connect to Clusters
      • Encryption at rest
      • Column-Level Encryption
      • Audit Logging
        • Configure Audit Logging
        • Session-Level Audit Logging
        • Object-Level Audit Logging
      • Vulnerability disclosure policy
    • Manage
      • Back up and restore
        • Back up data
        • Restore data
        • Point-in-time restore
        • Snapshot and restore data
      • Migrate data
        • Bulk import
        • Bulk export
      • Change cluster configuration
      • Diagnostics reporting
      • Upgrade a deployment
      • Grow cluster
    • Troubleshoot
      • Troubleshooting
      • Common error messages
      • Cluster level issues
        • YCQL connection issues
        • YEDIS connection Issues
        • Recover tserver/master
        • Replace a failed YB-TServer
        • Replace a failed YB-Master
        • Manual remote bootstrap when a majority of peers fail
      • Node level issues
        • Check servers
        • Inspect logs
        • System statistics
        • Disk failure
    • Contribute
      • Core database
        • Contribution checklist
        • Build the source
        • Configure a CLion project
        • Run the tests
  • YUGABYTE PLATFORM
    • Yugabyte Platform
      • Overview
        • Install
        • Configure
      • Install Yugabyte Platform
        • Prerequisites
        • Prepare the environment
        • Install software
        • Prepare nodes (on-prem)
        • Uninstall software
      • Configure Yugabyte Platform
        • Create admin user
        • Configure the cloud provider
        • Configure the backup target
        • Configure alerts and health checking
        • Create and edit instance tags
      • Create deployments
        • Multi-zone universe
        • Multi-region universe
        • Read replica cluster
      • Manage deployments
        • Start and stop processes
        • Add a node
        • Enable high availability
        • Remove a node
        • Edit a universe
        • Edit configuration flags
        • Upgrade the YugabyteDB software
        • Delete a universe
        • Migrate to Helm 3
      • Back up and restore universes
        • Configure backup storage
        • Back up universe data
        • Restore universe data
        • Schedule data backups
      • Security
        • Security checklist
        • Customize ports
        • Authorization platform
        • Create a KMS configuration
        • Enable encryption at rest
        • Enable encryption in transit (TLS)
        • Network security
      • Alerts and monitoring
        • Live Queries dashboard
        • Slow Queries dashboard
      • Troubleshoot
        • Install and upgrade issues
        • Universe issues
      • Administer Yugabyte Platform
        • Back Up and Restore Yugabyte Platform
  • YUGABYTE CLOUD
    • Yugabyte Cloud
      • Free tier
      • Create clusters
      • Monitor clusters
      • Create databases
      • Manage database access
      • Connect to clusters
  • REFERENCE
    • Reference
    • Architecture
      • Design goals
      • Key concepts
        • Universe
        • YB-TServer Service
        • YB-Master Service
      • Core functions
        • Universe creation
        • Table creation
        • Write IO path
        • Read IO path
        • High availability
      • Layered architecture
      • Query layer
        • Overview
      • DocDB transactions layer
        • Transactions overview
        • Transaction isolation levels
        • Explicit locking
        • Single-row transactions
        • Distributed transactions
        • Transactional IO path
      • DocDB sharding layer
        • Hash & range sharding
        • Tablet splitting
        • Colocated tables
      • DocDB replication layer
        • Replication
        • xCluster replication
        • Read replicas
        • Change data capture (CDC)
      • DocDB storage layer
        • Persistence
        • Performance
    • APIs
      • YSQL
        • The SQL language
          • SQL statements
            • ABORT
            • ALTER DATABASE
            • ALTER DEFAULT PRIVILEGES
            • ALTER DOMAIN
            • ALTER GROUP
            • ALTER POLICY
            • ALTER ROLE
            • ALTER SEQUENCE
            • ALTER TABLE
            • ALTER USER
            • BEGIN
            • CALL
            • COMMENT
            • COMMIT
            • COPY
            • CREATE AGGREGATE
            • CREATE CAST
            • CREATE DATABASE
            • CREATE DOMAIN
            • CREATE EXTENSION
            • CREATE FUNCTION
            • CREATE GROUP
            • CREATE INDEX
            • CREATE OPERATOR
            • CREATE OPERATOR CLASS
            • CREATE POLICY
            • CREATE PROCEDURE
            • CREATE ROLE
            • CREATE RULE
            • CREATE SCHEMA
            • CREATE SEQUENCE
            • CREATE TABLE
            • CREATE TABLE AS
            • CREATE TRIGGER
            • CREATE TYPE
            • CREATE USER
            • CREATE VIEW
            • DEALLOCATE
            • DELETE
            • DO
            • DROP AGGREGATE
            • DROP CAST
            • DROP DATABASE
            • DROP DOMAIN
            • DROP EXTENSION
            • DROP FUNCTION
            • DROP GROUP
            • DROP OPERATOR
            • DROP OPERATOR CLASS
            • DROP OWNED
            • DROP POLICY
            • DROP PROCEDURE
            • DROP ROLE
            • DROP RULE
            • DROP SEQUENCE
            • DROP TABLE
            • DROP TRIGGER
            • DROP TYPE
            • DROP USER
            • END
            • EXECUTE
            • EXPLAIN
            • GRANT
            • INSERT
            • LOCK
            • PREPARE
            • REASSIGN OWNED
            • RESET
            • REVOKE
            • ROLLBACK
            • SELECT
            • SET
            • SET CONSTRAINTS
            • SET ROLE
            • SET SESSION AUTHORIZATION
            • SET TRANSACTION
            • SHOW
            • SHOW TRANSACTION
            • TRUNCATE
            • UPDATE
            • VALUES
          • WITH clause
            • WITH clause—SQL syntax and semantics
            • recursive CTE
            • case study—traversing an employee hierarchy
            • traversing general graphs
              • graph representation
              • common code
              • undirected cyclic graph
              • directed cyclic graph
              • directed acyclic graph
              • rooted tree
              • Unique containing paths
              • Stress testing find_paths()
            • case study—Bacon Numbers from IMDb
              • Bacon numbers for synthetic data
              • Bacon numbers for IMDb data
        • Data types
          • Array
            • array[] constructor
            • Literals
              • Text typecasting and literals
              • Array of primitive values
              • Row
              • Array of rows
            • FOREACH loop (PL/pgSQL)
            • array of DOMAINs
            • Functions and operators
              • ANY and ALL
              • Array comparison
              • Array slice operator
              • Array concatenation
              • Array properties
              • array_agg(), unnest(), generate_subscripts()
              • array_fill()
              • array_position(), array_positions()
              • array_remove()
              • array_replace() / set value
              • array_to_string()
              • string_to_array()
          • Binary
          • Boolean
          • Character
          • Date and time
          • JSON
            • JSON literals
            • Primitive and compound data types
            • Code example conventions
            • Indexes and check constraints
            • Functions & operators
              • ::jsonb, ::json, ::text (typecast)
              • ->, ->>, #>, #>> (JSON subvalues)
              • - and #- (remove)
              • || (concatenation)
              • = (equality)
              • @> and <@ (containment)
              • ? and ?| and ?& (key or value existence)
              • array_to_json()
              • jsonb_agg()
              • jsonb_array_elements()
              • jsonb_array_elements_text()
              • jsonb_array_length()
              • jsonb_build_object()
              • jsonb_build_array()
              • jsonb_each()
              • jsonb_each_text()
              • jsonb_extract_path()
              • jsonb_extract_path_text() and json_extract_path_text()
              • jsonb_object()
              • jsonb_object_agg()
              • jsonb_object_keys()
              • jsonb_populate_record()
              • jsonb_populate_recordset()
              • jsonb_pretty()
              • jsonb_set() and jsonb_insert()
              • jsonb_strip_nulls()
              • jsonb_to_record()
              • jsonb_to_recordset()
              • jsonb_typeof()
              • row_to_json()
              • to_jsonb()
          • Money
          • Numeric
          • Range
          • Serial
          • UUID
        • Functions and operators
          • Aggregate functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • grouping sets, rollup, cube
            • Per function signature and purpose
              • avg(), count(), max(), min(), sum()
              • array_agg(), string_agg(), jsonb_agg(), jsonb_object_agg()
              • bit_and(), bit_or(), bool_and(), bool_or()
              • variance(), var_pop(), var_samp(), stddev(), stddev_pop(), stddev_samp()
              • linear regression
                • covar_pop(), covar_samp(), corr()
                • regr_%()
              • mode(), percentile_disc(), percentile_cont()
              • rank(), dense_rank(), percent_rank(), cume_dist()
            • case study—percentile_cont() and the "68–95–99.7" rule
            • case study—linear regression on COVID data
              • Download the COVIDcast data
              • Ingest the COVIDcast data
                • Inspect the COVIDcast data
                • Copy the .csv files to staging tables
                • Check staged data conforms to the rules
                • Join the staged data into a single table
                • SQL scripts
                  • Create cr_staging_tables()
                  • Create cr_copy_from_scripts()
                  • Create assert_assumptions_ok()
                  • Create xform_to_covidcast_fb_survey_results()
                  • ingest-the-data.sql
              • Analyze the COVIDcast data
                • symptoms vs mask-wearing by day
                • Data for scatter-plot for 21-Oct-2020
                • Scatter-plot for 21-Oct-2020
                • SQL scripts
                  • analysis-queries.sql
                  • synthetic-data.sql
          • currval()
          • lastval()
          • nextval()
          • Window functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • Per function signature and purpose
              • row_number(), rank() and dense_rank()
              • percent_rank(), cume_dist() and ntile()
              • first_value(), nth_value(), last_value()
              • lag(), lead()
              • Tables for the code examples
                • table t1
                • table t2
                • table t3
                • table t4
            • case study—analyzing a normal distribution
              • Bucket allocation scheme
              • do_clean_start.sql
              • cr_show_t4.sql
              • cr_dp_views.sql
              • cr_int_views.sql
              • cr_pr_cd_equality_report.sql
              • cr_bucket_using_width_bucket.sql
              • cr_bucket_dedicated_code.sql
              • do_assert_bucket_ok
              • cr_histogram.sql
              • cr_do_ntile.sql
              • cr_do_percent_rank.sql
              • cr_do_cume_dist.sql
              • do_populate_results.sql
              • do_report_results.sql
              • do_compare_dp_results.sql
              • do_demo.sql
              • Reports
                • Histogram report
                • dp-results
                • compare-dp-results
                • int-results
        • Extensions
        • Keywords
        • Reserved names
      • YCQL
        • ALTER KEYSPACE
        • ALTER ROLE
        • ALTER TABLE
        • CREATE INDEX
        • CREATE KEYSPACE
        • CREATE ROLE
        • CREATE TABLE
        • CREATE TYPE
        • DROP INDEX
        • DROP KEYSPACE
        • DROP ROLE
        • DROP TABLE
        • DROP TYPE
        • GRANT PERMISSION
        • GRANT ROLE
        • REVOKE PERMISSION
        • REVOKE ROLE
        • USE
        • INSERT
        • SELECT
        • EXPLAIN
        • UPDATE
        • DELETE
        • TRANSACTION
        • TRUNCATE
        • Simple expressions
        • Subscripted expressions
        • Function call
        • Operators
        • BLOB
        • BOOLEAN
        • Collection
        • FROZEN
        • INET
        • Integer and counter
        • Non-integer
        • TEXT
        • DATE, TIME, and TIMESTAMP
        • UUID and TIMEUUID
        • JSONB
        • Date and time
        • BATCH
    • CLIs
      • yb-ctl
      • yb-docker-ctl
      • ysqlsh
      • ycqlsh
      • yb-admin
      • yb-ts-cli
      • ysql_dump
      • ysql_dumpall
    • Configuration
      • yb-tserver
      • yb-master
      • yugabyted
      • Default ports
    • Drivers
      • Client drivers for YSQL API
      • YugabyteDB JDBC Driver
      • Client drivers for YCQL
      • Spring Data YugabyteDB
    • Connectors
      • Kafka Connect YugabyteDB
    • Third party tools
      • DBeaver
      • DbSchema
      • pgAdmin
      • SQL Workbench/J
      • TablePlus
      • Visual Studio Code
    • Sample datasets
      • Chinook
      • Northwind
      • PgExercises
      • SportsDB
  • RELEASES
    • Releases
    • Releases overview
    • Release versioning
    • What's new
      • v2.7 (latest)
      • v2.4 (stable)
    • Earlier releases
      • v2.5 series
      • v2.3.3
      • v2.3.2
      • v2.3.1
      • v2.3.0
      • v2.2.0 series
      • v2.1.8
      • v2.1.6
      • v2.1.5
      • v2.1.4
      • v2.1.3
      • v2.1.2
      • v2.1.1
      • v2.1.0
      • v2.0.11
      • v2.0.10
      • v2.0.9
      • v2.0.8
      • v2.0.7
      • v2.0.6
      • v2.0.5
      • v2.0.3
      • v2.0.1
      • v2.0.0
      • v1.3.1
      • v1.3.0
      • v1.2.12
      • v1.2.11
      • v1.2.10
      • v1.2.9
      • v1.2.8
      • v1.2.6
      • v1.2.5
      • v1.2.4
  • FAQ
    • Comparisons
      • Amazon Aurora
      • Google Cloud Spanner
      • CockroachDB
      • TiDB
      • Vitess
      • MongoDB
      • FoundationDB
      • Amazon DynamoDB
      • Azure Cosmos DB
      • Apache Cassandra
      • PostgreSQL
      • Redis in-memory store
      • Apache HBase
    • FAQs
      • General FAQ
      • Operations FAQ
      • API compatibility FAQ
      • Yugabyte Platform FAQ
  • MISC
    • YEDIS
      • Quick start
      • Develop
        • Build an application
        • C#
        • C++
        • Go
        • Java
        • NodeJS
        • Python
      • API reference
        • APPEND
        • AUTH
        • CONFIG
        • CREATEDB
        • DELETEDB
        • LISTDB
        • SELECT
        • DEL
        • ECHO
        • EXISTS
        • EXPIRE
        • EXPIREAT
        • FLUSHALL
        • FLUSHDB
        • GET
        • GETRANGE
        • GETSET
        • HDEL
        • HEXISTS
        • HGET
        • HGETALL
        • HINCRBY
        • HKEYS
        • HLEN
        • HMGET
        • HMSET
        • HSET
        • HSTRLEN
        • HVALS
        • INCR
        • INCRBY
        • KEYS
        • MONITOR
        • PEXPIRE
        • PEXPIREAT
        • PTTL
        • ROLE
        • SADD
        • SCARD
        • RENAME
        • SET
        • SETEX
        • PSETEX
        • SETRANGE
        • SISMEMBER
        • SMEMBERS
        • SREM
        • STRLEN
        • ZRANGE
        • TSADD
        • TSCARD
        • TSGET
        • TSLASTN
        • TSRANGEBYTIME
        • TSREM
        • TSREVRANGEBYTIME
        • TTL
        • ZADD
        • ZCARD
        • ZRANGEBYSCORE
        • ZREM
        • ZREVRANGE
        • ZSCORE
        • PUBSUB
        • PUBLISH
        • SUBSCRIBE
        • UNSUBSCRIBE
        • PSUBSCRIBE
        • PUNSUBSCRIBE
    • Legal
      • Third party software
> Quick start >

3. Explore Yugabyte SQL

  • 1. Load sample data
  • 2. Simple queries
  • 3. JOINs
  • 4. Distributed transactions
  • 5. Built-in functions
  • 6. Aggregations
  • 7. Views
  • YSQL
  • YCQL

After creating a local cluster, you can start exploring YugabyteDB's PostgreSQL-compatible, fully-relational Yugabyte SQL API.

ysqlsh is the command line shell for interacting with the YSQL API. You will use ysqlsh for this tutorial.

1. Load sample data

Follow the steps below to create a database and load sample data.

Note

The five SQL scripts (aka .sql files) used to create and load the sample data in the steps below are located in the share directory of your YugabyteDB installation. You can verify the files are available by entering the following ls command from the YugabyteDB home directory.

$ ls share/

The share directory includes sample dataset files available for creating databases for learning YugabyteDB. The files that will be used in the steps below are schema.sql, orders.sql, products.sql,reviews.sql and users.sql.

  • macOS
  • Linux
  • Docker
  • Kubernetes

To open the YSQL shell, run ysqlsh.

$ ./bin/ysqlsh
ysqlsh (11.2-YB-2.1.0.0-b0)
Type "help" for help.

yugabyte=#

To open the YSQL shell, run ysqlsh.

$ ./bin/ysqlsh
ysqlsh (11.2-YB-2.1.0.0-b0)
Type "help" for help.

yugabyte=#

To open the YSQL shell, run ysqlsh.

$ docker exec -it yugabyte /home/yugabyte/bin/ysqlsh --echo-queries
ysqlsh (11.2-YB-2.1.0.0-b0)
Type "help" for help.

yugabyte=#

To open the YSQL shell (ysqlsh), run the following.

$ kubectl --namespace yb-demo exec -it yb-tserver-0 -- sh -c "cd /home/yugabyte && ysqlsh -h yb-tserver-0 --echo-queries"
ysqlsh (11.2-YB-2.1.0.0-b0)
Type "help" for help.

yugabyte=#

  1. Create a database (yb_demo) by using the following CREATE DATABASE command.

    yugabyte=# CREATE DATABASE yb_demo;
    
  2. Connect to the new database using the following YSQL shell \c meta command.

    yugabyte=# \c yb_demo;
    
  3. Create the database schema, which includes four tables, by running the following \i meta command.

    yb_demo=# \i share/schema.sql;
    
  4. Load the data into the tables by running the following four \i commands.

    yb_demo=# \i share/products.sql
    
    yb_demo=# \i share/users.sql
    
    yb_demo=# \i share/orders.sql
    
    yb_demo=# \i share/reviews.sql
    

    You now have sample data and are ready to begin exploring YSQL in YugabyteDB.

2. Simple queries

Lets us look at the schema of the products table. You can do this as follows:

yb_demo=# \d products

You should see an output like the following:

                                        Table "public.products"
   Column   |            Type             | Collation | Nullable |               Default                
------------+-----------------------------+-----------+----------+--------------------------------------
 id         | bigint                      |           | not null | nextval('products_id_seq'::regclass)
 created_at | timestamp without time zone |           |          | 
 category   | text                        |           |          | 
 ean        | text                        |           |          | 
 price      | double precision            |           |          | 
 quantity   | integer                     |           |          | 5000
 rating     | double precision            |           |          | 
 title      | text                        |           |          | 
 vendor     | text                        |           |          | 
Indexes:
    "products_pkey" PRIMARY KEY, lsm (id HASH)

To see how many products there are in this table, you can run the following query.

yb_demo=# SELECT count(*) FROM products;

You should see an output which looks like the following:

 count
-------
   200
(1 row)

Now let us run a query to select the id, title, category and price columns for the first five products.

yb_demo=# SELECT id, title, category, price, rating
          FROM products
          LIMIT 5;

You should see an output like the following:

 id  |           title            | category |      price       | rating 
-----+----------------------------+----------+------------------+--------
  22 | Enormous Marble Shoes      | Gizmo    | 21.4245199604423 |    4.2
  38 | Lightweight Leather Gloves | Gadget   | 44.0462485589292 |    3.8
 162 | Gorgeous Copper Knife      | Gadget   | 22.3785988001101 |    3.3
 174 | Rustic Iron Keyboard       | Gadget   | 74.4095392945406 |    4.4
  46 | Rustic Linen Keyboard      | Gadget   | 78.6996782532274 |      4
(5 rows)

To view the next 3 products, you simply add an OFFSET 5 clause to start from the fifth product.

yb_demo=# SELECT id, title, category, price, rating
          FROM products
          LIMIT 3 OFFSET 5;

You should see an output which looks like the following:

 id  |           title           | category  |      price       | rating 
-----+---------------------------+-----------+------------------+--------
 152 | Enormous Aluminum Clock   | Widget    | 32.5971248660044 |    3.6
   3 | Synergistic Granite Chair | Doohickey | 35.3887448815391 |      4
 197 | Aerodynamic Concrete Lamp | Gizmo     | 46.7640712447334 |    4.6
(3 rows)

3. JOINs

A JOIN clause is used to combine rows from two or more tables, based on a related column between them. Let us do this by combining some orders with the information of the corresponding users that placed the order.

From the orders table, you are going to select the total column that represents the total amount the user paid. For each of these orders, you are going to fetch the id, the name and the email from the users table of the corresponding users that placed those orders. The related column between the two tables is the user's id. This can be expressed as the following join query:

yb_demo=# SELECT users.id, users.name, users.email, orders.id, orders.total
          FROM orders INNER JOIN users ON orders.user_id=users.id
          LIMIT 10;

You should see something like the following:

  id  |        name         |             email             |  id   |      total
------+---------------------+-------------------------------+-------+------------------
  616 | Rex Thiel           | rex-thiel@gmail.com           |  4443 | 101.414602060277
 2289 | Alanis Kovacek      | alanis.kovacek@yahoo.com      | 17195 | 71.8499366564206
   37 | Jaleel Collins      | jaleel.collins@gmail.com      |   212 | 38.8821451022809
 2164 | Cordia Farrell      | cordia.farrell@gmail.com      | 16223 | 37.7489430287531
 1528 | Donny Murazik       | murazik-donny@hotmail.com     | 11546 | 52.3082273751586
 1389 | Henriette O'Connell | connell-o-henriette@yahoo.com | 10551 | 69.3117644687696
 2408 | Blake Jast          | jast.blake@hotmail.com        | 18149 | 150.788925887077
 1201 | Kaycee Keebler      | kaycee-keebler@gmail.com      |  8937 | 48.3440955866708
 1421 | Cornell Cartwright  | cornell-cartwright@gmail.com  | 10772 | 191.867670306882
  523 | Deonte Hoeger       | hoeger.deonte@hotmail.com     |  3710 | 71.4010754169826
(10 rows)

4. Distributed transactions

In order to track the quantities accurately, each product being ordered in some quantity by a user has to decrement the corresponding product inventory quantity. These operations should be performed inside a transaction.

Imagine the user with id 1 wants to order for 10 units of the product with id 2.

Before running the transaction, you can verify that you have 5000 units of product 2 in stock by running the following query:

yb_demo=# SELECT id, category, price, quantity FROM products WHERE id=2;
SELECT id, category, price, quantity FROM products WHERE id=2;
 id | category  |      price       | quantity
----+-----------+------------------+----------
  2 | Doohickey | 70.0798961307176 |     5000
(1 row)

Now, to place the order, you can run the following transaction:

yb_demo=# BEGIN TRANSACTION;

/* First insert a new order into the orders table. */
INSERT INTO orders
  (id, created_at, user_id, product_id, discount, quantity, subtotal, tax, total)
VALUES (
  (SELECT max(id)+1 FROM orders)                 /* id */,
  now()                                          /* created_at */,
  1                                              /* user_id */,
  2                                              /* product_id */, 
  0                                              /* discount */,
  10                                             /* quantity */,
  (10 * (SELECT price FROM products WHERE id=2)) /* subtotal */,
  0                                              /* tax */,
  (10 * (SELECT price FROM products WHERE id=2)) /* total */
) RETURNING id;

/* Next decrement the total quantity from the products table. */
UPDATE products SET quantity = quantity - 10 WHERE id = 2;

COMMIT;

We can verify that the order got inserted by running the following:

yb_demo=# select * from orders where id = (select max(id) from orders);
  id   |         created_at         | user_id | product_id | discount | quantity |     subtotal     | tax |      total       
-------+----------------------------+---------+------------+----------+----------+------------------+-----+------------------
 18761 | 2020-01-30 09:24:29.784078 |       1 |          2 |        0 |       10 | 700.798961307176 |   0 | 700.798961307176
(1 row)

We can also verify that total quantity of product id 2 in the inventory is 4990 by running the following query.

yb_demo=# SELECT id, category, price, quantity FROM products WHERE id=2;
 id | category  |      price       | quantity
----+-----------+------------------+----------
  2 | Doohickey | 70.0798961307176 |     4990
(1 row)

5. Built-in functions

YSQL supports a rich set of built-in functions. In this example, you will look at some functions such as DISTINCT, MIN, MAX and AVG in the context of the data set.

  • How are users signing up for my site?

To answer this question, you should list the unique set of source channels present in the database. This can be achieved as follows:

yb_demo=# SELECT DISTINCT(source) FROM users;
source
-----------
 Facebook
 Twitter
 Organic
 Affiliate
 Google
(5 rows)
  • What is the min, max and average price of products in the store?
yb_demo=# SELECT MIN(price), MAX(price), AVG(price) FROM products;
min               |       max        |       avg
------------------+------------------+------------------
 15.6919436739704 | 98.8193368436819 | 55.7463996679207
(1 row)

6. Aggregations

The GROUP BY clause is commonly used to perform aggregations. Below are a couple of examples of using these to answer some types of questions about the data.

  • What is the most effective channel for user signups?
yb_demo=# SELECT source, count(*) AS num_user_signups
          FROM users
          GROUP BY source
          ORDER BY num_user_signups DESC;
source     | num_user_signups
-----------+------------------
 Facebook  |              512
 Affiliate |              506
 Google    |              503
 Twitter   |              495
 Organic   |              484
(5 rows)
  • What are the most effective channels for product sales by revenue?
yb_demo=# SELECT source, ROUND(SUM(orders.total)) AS total_sales
          FROM users LEFT JOIN orders ON users.id=orders.user_id
          GROUP BY source
          ORDER BY total_sales DESC;
  source   | total_sales
-----------+-------------
 Facebook  |      333454
 Google    |      325184
 Twitter   |      320150
 Organic   |      319637
 Affiliate |      297605
(5 rows)

7. Views

Let us answer the questions below by creating a view.

  • What percentage of the total sales is from the Facebook channel?
yb_demo=# CREATE VIEW channel AS
            (SELECT source, ROUND(SUM(orders.total)) AS total_sales
             FROM users LEFT JOIN orders ON users.id=orders.user_id
             GROUP BY source
             ORDER BY total_sales DESC);

Now that the view is created, you can see it in our list of relations.

yb_demo=# \d
               List of relations
 Schema |      Name       |   Type   |  Owner
--------+-----------------+----------+----------
 public | channel         | view     | yugabyte
 public | orders          | table    | yugabyte
 public | orders_id_seq   | sequence | yugabyte
 public | products        | table    | yugabyte
 public | products_id_seq | sequence | yugabyte
 public | reviews         | table    | yugabyte
 public | reviews_id_seq  | sequence | yugabyte
 public | users           | table    | yugabyte
 public | users_id_seq    | sequence | yugabyte
(9 rows)
yb_demo=# SELECT source, 
            total_sales * 100.0 / (SELECT SUM(total_sales) FROM channel) AS percent_sales
          FROM channel
          WHERE source='Facebook';
  source  |  percent_sales
----------+------------------
 Facebook | 20.8927150492159
(1 row)

Next step

Build an application
  • 1. Load sample data
  • 2. Simple queries
  • 3. JOINs
  • 4. Distributed transactions
  • 5. Built-in functions
  • 6. Aggregations
  • 7. Views
Ask our community
  • Slack
  • Github
  • Forum
  • StackOverflow
Yugabyte
Contact Us
Copyright © 2017-2021 Yugabyte, Inc. All rights reserved.