Join us on YugabyteDB Community Slack
Star us on
Get Started
Slack
GitHub
Get Started
v2.7 (latest) v2.4 (stable) v2.2 (earlier version) v2.1 (earlier version) v2.0 (earlier version) v1.3 (earlier version)
  • YUGABYTEDB CORE
    • Quick start
      • 1. Install YugabyteDB
      • 2. Create a local cluster
      • 3. Explore distributed SQL
      • 4. Build an application
        • Java
        • NodeJS
        • Go
        • Python
        • Ruby
        • C#
        • PHP
        • C++
        • C
        • Scala
    • Explore features
      • YSQL vs PostgreSQL
        • Schemas and Tables
        • Data Types
        • Data Manipulation
        • Queries and Joins
        • Expressions and Operators
        • Cursors
        • Stored Procedures
        • Triggers
        • Table Partitioning
        • Tablespaces
        • Views
      • Fault tolerance
      • Horizontal Scalability
        • Scaling Transactions
        • Sharding Data
      • Transactions
        • Distributed Transactions
        • Isolation Levels
        • Explicit Locking
      • JSON Support
      • Multi-Region Deployments
        • Sync replication (3+ regions)
        • Async Replication (2+ regions)
        • Row-Level Geo-Partitioning
      • Query Tuning
        • Analyzing Queries with EXPLAIN
        • Viewing live queries with pg_stat_activity
        • Optimizing YSQL queries using pg_hint_plan
      • Follower reads
      • Colocated tables
      • Change data capture (CDC)
      • Extensions
      • Observability
        • Prometheus Integration
      • Security
    • Develop
      • Learn app development
        • 1. SQL vs NoSQL
        • 2. Data modeling
        • 3. Data types
        • 4. ACID transactions
        • 5. Aggregations
        • 6. Batch operations
        • 7. Date and time
        • 8. Strings and text
        • 9. TTL for data expiration
      • Ecosystem integrations
        • Apache Kafka
        • Spring Framework
        • Apache Spark
        • JanusGraph
        • KairosDB
        • Hasura
        • Presto
        • Metabase
      • Build GraphQL apps
        • Hasura
        • Prisma
      • Real-world examples
        • E-Commerce app
        • IoT fleet management
        • Retail Analytics
      • Explore sample apps
      • Best practices
    • Migrate
      • Migration process overview
      • Migrate from PostgreSQL
        • Convert a PostgreSQL schema
        • Migrate a PostgreSQL application
        • Export PostgreSQL data
        • Prepare a cluster
        • Import PostgreSQL data
        • Verify Migration
    • Deploy
      • Deployment checklist
      • Manual deployment
        • 1. System configuration
        • 2. Install software
        • 3. Start YB-Masters
        • 4. Start YB-TServers
        • 5. Verify deployment
      • Kubernetes
        • Single-zone
          • Open Source
          • Amazon EKS
          • Google Kubernetes Engine
          • Azure Kubernetes Service
        • Multi-zone
          • Amazon EKS
          • Google Kubernetes Engine
        • Multi-cluster
          • Google Kubernetes Engine
        • Best practices
        • Connect Clients
      • Docker
      • Public clouds
        • Amazon Web Services
        • Google Cloud Platform
        • Microsoft Azure
      • Multi-DC deployments
        • Three+ data center (3DC)
        • Two data center (2DC)
        • Read replica clusters
      • Change data capture (CDC)
        • CDC to Kafka
    • Benchmark
      • TPC-C
      • sysbench
      • YCSB
      • Key-value workload
      • Large datasets
      • Scalability
        • Scaling queries
      • Resilience
        • Jepsen testing
      • Performance Troubleshooting
    • Secure
      • Security checklist
      • Enable Authentication
        • Enable User Authentication
        • Configure ysql_hba_conf_csv
      • Authentication Methods
        • Password Authentication
        • LDAP Authentication
        • Host-Based Authentication
        • Trust Authentication
      • Role-Based Access Control
        • Overview
        • Manage Users and Roles
        • Grant Privileges
        • Row-Level Security (RLS)
        • Column-Level Security
      • Encryption in Transit
        • Create server certificates
        • Enable server-to-server encryption
        • Enable client-to-server encryption
        • Connect to Clusters
      • Encryption at rest
      • Column-Level Encryption
      • Audit Logging
        • Configure Audit Logging
        • Session-Level Audit Logging
        • Object-Level Audit Logging
      • Vulnerability disclosure policy
    • Manage
      • Back up and restore
        • Back up data
        • Restore data
        • Point-in-time restore
        • Snapshot and restore data
      • Migrate data
        • Bulk import
        • Bulk export
      • Change cluster configuration
      • Diagnostics reporting
      • Upgrade a deployment
      • Grow cluster
    • Troubleshoot
      • Troubleshooting
      • Common error messages
      • Cluster level issues
        • YCQL connection issues
        • YEDIS connection Issues
        • Recover tserver/master
        • Replace a failed YB-TServer
        • Replace a failed YB-Master
        • Manual remote bootstrap when a majority of peers fail
      • Node level issues
        • Check servers
        • Inspect logs
        • System statistics
        • Disk failure
    • Contribute
      • Core database
        • Contribution checklist
        • Build the source
        • Configure a CLion project
        • Run the tests
  • YUGABYTE PLATFORM
    • Yugabyte Platform
      • Overview
        • Install
        • Configure
      • Install Yugabyte Platform
        • Prerequisites
        • Prepare the environment
        • Install software
        • Prepare nodes (on-prem)
        • Uninstall software
      • Configure Yugabyte Platform
        • Create admin user
        • Configure the cloud provider
        • Configure the backup target
        • Configure alerts and health checking
        • Create and edit instance tags
      • Create deployments
        • Multi-zone universe
        • Multi-region universe
        • Read replica cluster
      • Manage deployments
        • Start and stop processes
        • Add a node
        • Enable high availability
        • Remove a node
        • Edit a universe
        • Edit configuration flags
        • Upgrade the YugabyteDB software
        • Delete a universe
        • Migrate to Helm 3
      • Back up and restore universes
        • Configure backup storage
        • Back up universe data
        • Restore universe data
        • Schedule data backups
      • Security
        • Security checklist
        • Customize ports
        • Authorization platform
        • Create a KMS configuration
        • Enable encryption at rest
        • Enable encryption in transit (TLS)
        • Network security
      • Alerts and monitoring
        • Live Queries dashboard
        • Slow Queries dashboard
      • Troubleshoot
        • Install and upgrade issues
        • Universe issues
      • Administer Yugabyte Platform
        • Back Up and Restore Yugabyte Platform
  • YUGABYTE CLOUD
    • Yugabyte Cloud
      • Free tier
      • Create clusters
      • Monitor clusters
      • Create databases
      • Manage database access
      • Connect to clusters
  • REFERENCE
    • Reference
    • Architecture
      • Design goals
      • Key concepts
        • Universe
        • YB-TServer Service
        • YB-Master Service
      • Core functions
        • Universe creation
        • Table creation
        • Write IO path
        • Read IO path
        • High availability
      • Layered architecture
      • Query layer
        • Overview
      • DocDB transactions layer
        • Transactions overview
        • Transaction isolation levels
        • Explicit locking
        • Single-row transactions
        • Distributed transactions
        • Transactional IO path
      • DocDB sharding layer
        • Hash & range sharding
        • Tablet splitting
        • Colocated tables
      • DocDB replication layer
        • Replication
        • xCluster replication
        • Read replicas
        • Change data capture (CDC)
      • DocDB storage layer
        • Persistence
        • Performance
    • APIs
      • YSQL
        • The SQL language
          • SQL statements
            • ABORT
            • ALTER DATABASE
            • ALTER DEFAULT PRIVILEGES
            • ALTER DOMAIN
            • ALTER GROUP
            • ALTER POLICY
            • ALTER ROLE
            • ALTER SEQUENCE
            • ALTER TABLE
            • ALTER USER
            • BEGIN
            • CALL
            • COMMENT
            • COMMIT
            • COPY
            • CREATE AGGREGATE
            • CREATE CAST
            • CREATE DATABASE
            • CREATE DOMAIN
            • CREATE EXTENSION
            • CREATE FUNCTION
            • CREATE GROUP
            • CREATE INDEX
            • CREATE OPERATOR
            • CREATE OPERATOR CLASS
            • CREATE POLICY
            • CREATE PROCEDURE
            • CREATE ROLE
            • CREATE RULE
            • CREATE SCHEMA
            • CREATE SEQUENCE
            • CREATE TABLE
            • CREATE TABLE AS
            • CREATE TRIGGER
            • CREATE TYPE
            • CREATE USER
            • CREATE VIEW
            • DEALLOCATE
            • DELETE
            • DO
            • DROP AGGREGATE
            • DROP CAST
            • DROP DATABASE
            • DROP DOMAIN
            • DROP EXTENSION
            • DROP FUNCTION
            • DROP GROUP
            • DROP OPERATOR
            • DROP OPERATOR CLASS
            • DROP OWNED
            • DROP POLICY
            • DROP PROCEDURE
            • DROP ROLE
            • DROP RULE
            • DROP SEQUENCE
            • DROP TABLE
            • DROP TRIGGER
            • DROP TYPE
            • DROP USER
            • END
            • EXECUTE
            • EXPLAIN
            • GRANT
            • INSERT
            • LOCK
            • PREPARE
            • REASSIGN OWNED
            • RESET
            • REVOKE
            • ROLLBACK
            • SELECT
            • SET
            • SET CONSTRAINTS
            • SET ROLE
            • SET SESSION AUTHORIZATION
            • SET TRANSACTION
            • SHOW
            • SHOW TRANSACTION
            • TRUNCATE
            • UPDATE
            • VALUES
          • WITH clause
            • WITH clause—SQL syntax and semantics
            • recursive CTE
            • case study—traversing an employee hierarchy
            • traversing general graphs
              • graph representation
              • common code
              • undirected cyclic graph
              • directed cyclic graph
              • directed acyclic graph
              • rooted tree
              • Unique containing paths
              • Stress testing find_paths()
            • case study—Bacon Numbers from IMDb
              • Bacon numbers for synthetic data
              • Bacon numbers for IMDb data
        • Data types
          • Array
            • array[] constructor
            • Literals
              • Text typecasting and literals
              • Array of primitive values
              • Row
              • Array of rows
            • FOREACH loop (PL/pgSQL)
            • array of DOMAINs
            • Functions and operators
              • ANY and ALL
              • Array comparison
              • Array slice operator
              • Array concatenation
              • Array properties
              • array_agg(), unnest(), generate_subscripts()
              • array_fill()
              • array_position(), array_positions()
              • array_remove()
              • array_replace() / set value
              • array_to_string()
              • string_to_array()
          • Binary
          • Boolean
          • Character
          • Date and time
          • JSON
            • JSON literals
            • Primitive and compound data types
            • Code example conventions
            • Indexes and check constraints
            • Functions & operators
              • ::jsonb, ::json, ::text (typecast)
              • ->, ->>, #>, #>> (JSON subvalues)
              • - and #- (remove)
              • || (concatenation)
              • = (equality)
              • @> and <@ (containment)
              • ? and ?| and ?& (key or value existence)
              • array_to_json()
              • jsonb_agg()
              • jsonb_array_elements()
              • jsonb_array_elements_text()
              • jsonb_array_length()
              • jsonb_build_object()
              • jsonb_build_array()
              • jsonb_each()
              • jsonb_each_text()
              • jsonb_extract_path()
              • jsonb_extract_path_text() and json_extract_path_text()
              • jsonb_object()
              • jsonb_object_agg()
              • jsonb_object_keys()
              • jsonb_populate_record()
              • jsonb_populate_recordset()
              • jsonb_pretty()
              • jsonb_set() and jsonb_insert()
              • jsonb_strip_nulls()
              • jsonb_to_record()
              • jsonb_to_recordset()
              • jsonb_typeof()
              • row_to_json()
              • to_jsonb()
          • Money
          • Numeric
          • Range
          • Serial
          • UUID
        • Functions and operators
          • Aggregate functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • grouping sets, rollup, cube
            • Per function signature and purpose
              • avg(), count(), max(), min(), sum()
              • array_agg(), string_agg(), jsonb_agg(), jsonb_object_agg()
              • bit_and(), bit_or(), bool_and(), bool_or()
              • variance(), var_pop(), var_samp(), stddev(), stddev_pop(), stddev_samp()
              • linear regression
                • covar_pop(), covar_samp(), corr()
                • regr_%()
              • mode(), percentile_disc(), percentile_cont()
              • rank(), dense_rank(), percent_rank(), cume_dist()
            • case study—percentile_cont() and the "68–95–99.7" rule
            • case study—linear regression on COVID data
              • Download the COVIDcast data
              • Ingest the COVIDcast data
                • Inspect the COVIDcast data
                • Copy the .csv files to staging tables
                • Check staged data conforms to the rules
                • Join the staged data into a single table
                • SQL scripts
                  • Create cr_staging_tables()
                  • Create cr_copy_from_scripts()
                  • Create assert_assumptions_ok()
                  • Create xform_to_covidcast_fb_survey_results()
                  • ingest-the-data.sql
              • Analyze the COVIDcast data
                • symptoms vs mask-wearing by day
                • Data for scatter-plot for 21-Oct-2020
                • Scatter-plot for 21-Oct-2020
                • SQL scripts
                  • analysis-queries.sql
                  • synthetic-data.sql
          • currval()
          • lastval()
          • nextval()
          • Window functions
            • Informal functionality overview
            • Invocation syntax and semantics
            • Per function signature and purpose
              • row_number(), rank() and dense_rank()
              • percent_rank(), cume_dist() and ntile()
              • first_value(), nth_value(), last_value()
              • lag(), lead()
              • Tables for the code examples
                • table t1
                • table t2
                • table t3
                • table t4
            • case study—analyzing a normal distribution
              • Bucket allocation scheme
              • do_clean_start.sql
              • cr_show_t4.sql
              • cr_dp_views.sql
              • cr_int_views.sql
              • cr_pr_cd_equality_report.sql
              • cr_bucket_using_width_bucket.sql
              • cr_bucket_dedicated_code.sql
              • do_assert_bucket_ok
              • cr_histogram.sql
              • cr_do_ntile.sql
              • cr_do_percent_rank.sql
              • cr_do_cume_dist.sql
              • do_populate_results.sql
              • do_report_results.sql
              • do_compare_dp_results.sql
              • do_demo.sql
              • Reports
                • Histogram report
                • dp-results
                • compare-dp-results
                • int-results
        • Extensions
        • Keywords
        • Reserved names
      • YCQL
        • ALTER KEYSPACE
        • ALTER ROLE
        • ALTER TABLE
        • CREATE INDEX
        • CREATE KEYSPACE
        • CREATE ROLE
        • CREATE TABLE
        • CREATE TYPE
        • DROP INDEX
        • DROP KEYSPACE
        • DROP ROLE
        • DROP TABLE
        • DROP TYPE
        • GRANT PERMISSION
        • GRANT ROLE
        • REVOKE PERMISSION
        • REVOKE ROLE
        • USE
        • INSERT
        • SELECT
        • EXPLAIN
        • UPDATE
        • DELETE
        • TRANSACTION
        • TRUNCATE
        • Simple expressions
        • Subscripted expressions
        • Function call
        • Operators
        • BLOB
        • BOOLEAN
        • Collection
        • FROZEN
        • INET
        • Integer and counter
        • Non-integer
        • TEXT
        • DATE, TIME, and TIMESTAMP
        • UUID and TIMEUUID
        • JSONB
        • Date and time
        • BATCH
    • CLIs
      • yb-ctl
      • yb-docker-ctl
      • ysqlsh
      • ycqlsh
      • yb-admin
      • yb-ts-cli
      • ysql_dump
      • ysql_dumpall
    • Configuration
      • yb-tserver
      • yb-master
      • yugabyted
      • Default ports
    • Drivers
      • Client drivers for YSQL API
      • YugabyteDB JDBC Driver
      • Client drivers for YCQL
      • Spring Data YugabyteDB
    • Connectors
      • Kafka Connect YugabyteDB
    • Third party tools
      • DBeaver
      • DbSchema
      • pgAdmin
      • SQL Workbench/J
      • TablePlus
      • Visual Studio Code
    • Sample datasets
      • Chinook
      • Northwind
      • PgExercises
      • SportsDB
  • RELEASES
    • Releases
    • Releases overview
    • Release versioning
    • What's new
      • v2.7 (latest)
      • v2.4 (stable)
    • Earlier releases
      • v2.5 series
      • v2.3.3
      • v2.3.2
      • v2.3.1
      • v2.3.0
      • v2.2.0 series
      • v2.1.8
      • v2.1.6
      • v2.1.5
      • v2.1.4
      • v2.1.3
      • v2.1.2
      • v2.1.1
      • v2.1.0
      • v2.0.11
      • v2.0.10
      • v2.0.9
      • v2.0.8
      • v2.0.7
      • v2.0.6
      • v2.0.5
      • v2.0.3
      • v2.0.1
      • v2.0.0
      • v1.3.1
      • v1.3.0
      • v1.2.12
      • v1.2.11
      • v1.2.10
      • v1.2.9
      • v1.2.8
      • v1.2.6
      • v1.2.5
      • v1.2.4
  • FAQ
    • Comparisons
      • Amazon Aurora
      • Google Cloud Spanner
      • CockroachDB
      • TiDB
      • Vitess
      • MongoDB
      • FoundationDB
      • Amazon DynamoDB
      • Azure Cosmos DB
      • Apache Cassandra
      • PostgreSQL
      • Redis in-memory store
      • Apache HBase
    • FAQs
      • General FAQ
      • Operations FAQ
      • API compatibility FAQ
      • Yugabyte Platform FAQ
  • MISC
    • YEDIS
      • Quick start
      • Develop
        • Build an application
        • C#
        • C++
        • Go
        • Java
        • NodeJS
        • Python
      • API reference
        • APPEND
        • AUTH
        • CONFIG
        • CREATEDB
        • DELETEDB
        • LISTDB
        • SELECT
        • DEL
        • ECHO
        • EXISTS
        • EXPIRE
        • EXPIREAT
        • FLUSHALL
        • FLUSHDB
        • GET
        • GETRANGE
        • GETSET
        • HDEL
        • HEXISTS
        • HGET
        • HGETALL
        • HINCRBY
        • HKEYS
        • HLEN
        • HMGET
        • HMSET
        • HSET
        • HSTRLEN
        • HVALS
        • INCR
        • INCRBY
        • KEYS
        • MONITOR
        • PEXPIRE
        • PEXPIREAT
        • PTTL
        • ROLE
        • SADD
        • SCARD
        • RENAME
        • SET
        • SETEX
        • PSETEX
        • SETRANGE
        • SISMEMBER
        • SMEMBERS
        • SREM
        • STRLEN
        • ZRANGE
        • TSADD
        • TSCARD
        • TSGET
        • TSLASTN
        • TSRANGEBYTIME
        • TSREM
        • TSREVRANGEBYTIME
        • TTL
        • ZADD
        • ZCARD
        • ZRANGEBYSCORE
        • ZREM
        • ZREVRANGE
        • ZSCORE
        • PUBSUB
        • PUBLISH
        • SUBSCRIBE
        • UNSUBSCRIBE
        • PSUBSCRIBE
        • PUNSUBSCRIBE
    • Legal
      • Third party software
> APIs > YSQL > Functions and operators > Window functions > Per function signature and purpose >

lag(), lead()

  • Example
  • lag()
  • lead()
  • Example of returning a row
  • Realistic use case

These functions look backwards, or forwards, by the specified number of rows from the current row, within the current window. The functions fall into the second group, Window functions that return column(s) of another row within the window in the section List of all window functions. Each of the functions in the second group makes obvious sense when the scope within which the specified row is found is the entire window. Only this use will be described here.

Example

If you haven't yet installed the tables that the code examples use, then go to the section The data sets used by the code examples.

Try this basic demonstration. The actual argument, 2, for each of lag() and lead() means, respectively, look back by two rows and look forward by two rows.

\pset null '<null>'
select
  to_char(day, 'Dy DD-Mon') as "Day",
  price,
  lag (price, 2) over w as "last-but-one price",
  lead(price, 2) over w as "next-but-one price"
from t3
window w as (order by day)
order by day;

This is the result:

    Day     | price  | last-but-one price | next-but-one price 
------------+--------+--------------------+--------------------
 Mon 15-Sep | $19.01 |             <null> |             $18.10
 Tue 16-Sep | $18.96 |             <null> |             $18.75
 Wed 17-Sep | $18.10 |             $19.01 |             $20.07
 Thu 18-Sep | $18.75 |             $18.96 |             $19.75
 Fri 19-Sep | $20.07 |             $18.10 |             $19.69
 Mon 22-Sep | $19.75 |             $18.75 |             $19.95
 Tue 23-Sep | $19.69 |             $20.07 |             $20.47
 Wed 24-Sep | $19.95 |             $19.75 |             $20.62
 Thu 25-Sep | $20.47 |             $19.69 |             $18.77
 Fri 26-Sep | $20.62 |             $19.95 |             $18.29
 Mon 29-Sep | $18.77 |             $20.47 |             $19.86
 Tue 30-Sep | $18.29 |             $20.62 |             $19.49
 Wed 01-Oct | $19.86 |             $18.77 |             $19.48
 Thu 02-Oct | $19.49 |             $18.29 |             $18.30
 Fri 03-Oct | $19.48 |             $19.86 |             $16.78
 Mon 06-Oct | $18.30 |             $19.49 |             $16.88
 Tue 07-Oct | $16.78 |             $19.48 |             $16.21
 Wed 08-Oct | $16.88 |             $18.30 |             $16.68
 Thu 09-Oct | $16.21 |             $16.78 |             $18.86
 Fri 10-Oct | $16.68 |             $16.88 |             $17.69
 Mon 13-Oct | $18.86 |             $16.21 |             $15.95
 Tue 14-Oct | $17.69 |             $16.68 |             $16.99
 Wed 15-Oct | $15.95 |             $18.86 |             $17.02
 Thu 16-Oct | $16.99 |             $17.69 |             <null>
 Fri 17-Oct | $17.02 |             $15.95 |             <null>

Notice that "last_but_one_price" is NULL for the first two rows. This is, of course, because looking back by two rows for each of these takes you to before the start of the window and so the result of_"lag(price, 2)"_ cannot be determined. In the same way, _"next_but_one_price"_ is NULL for the last two rows. It's easier to check, visually, that the results are as promised by focusing on one particular row, say Wed 01-Oct, the previous-but-one row, Mon 29-Sep, and the next-but-one row, Fri 03-Oct, thus:

with v as (
  select
    day,
    price,
    lag (price, 2) over w as lag_2,
    lead(price, 2) over w as lead_2
  from t3
  window w as (order by day))
select 
  to_char(day, 'Dy DD-Mon') as "Day",
  price,
  lag_2  as "last-but-one price",
  lead_2 as "next-but-one price"
from v
where to_char(day, 'Dy DD-Mon') in
  ('Mon 29-Sep', 'Wed 01-Oct', 'Fri 03-Oct')
order by day;

Notice that the WHERE clause restriction must be applied only after the lag() and lead() window functions have been able to access all the rows in the window.

The values for "last-but-one price" and "next-but-one price" have been manually blanked out in the results, here, to remove distractions from the visual check:

    Day     | price  | last-but-one price | next-but-one price 
------------+--------+--------------------+--------------------
 Mon 29-Sep | $18.77 |                    |
 Wed 01-Oct | $19.86 |             $18.77 |             $19.48
 Fri 03-Oct | $19.48 |                    |

lag()

Signature:

input value:       anyelement, int, [, anyelement]
                   
return value:      anyelement

Purpose: Return, for the current row, the designated value from the row in the ordered input set that is "lag_distance " rows before it. The data type of the return value matches that of the input value. NULL is returned when the value of "lag_distance" places the earlier row before the start of the window. This is illustrated by the example above.

Use the optional last parameter to specify the value to be returned, instead of NULL, when the looked-up row falls outside of the current window.

lead()

Signature:

input value:       anyelement, int, [, anyelement]
                   
return value:      anyelement

Purpose: Return, for the current row, the designated value from the row in the ordered input set that is "lead_distance" rows after it. The data type of the return value matches that of the input value. NULL is returned when the value of "lead_distance" places the later row after the start of the window. This is illustrated by the example above.

Use the optional last parameter to specify the value to be returned, instead of NULL, when the looked-up row falls outside of the current window.

Example of returning a row

Here is the minimal demonstration of this technique. Notice that the syntax requires that the actual argument to lag() must used to construct a record or a "row" type value. Usually, you want to access the individual column values, but, it can be tricky to work with records because they are anonymous data types. This means that you don't know what the fields are called. The better, therefore, is given by a user-defined "row" type. Do this to demonstrate the technique:

drop type if exists rt cascade;
create type rt as(day date, price money);
\pset null '<null>'

select
  day,
  price,
  lag((day, price)::rt, 1) over w as lag_1
from t3
window w as (order by day);

This is the result. (Some rows have been manually elided.)

    day     | price  |        lag_1        
------------+--------+---------------------
 2008-09-15 | $19.01 | <null>
 2008-09-16 | $18.96 | (2008-09-15,$19.01)
 2008-09-17 | $18.10 | (2008-09-16,$18.96)
 ...
 2008-10-15 | $15.95 | (2008-10-14,$17.69)
 2008-10-16 | $16.99 | (2008-10-15,$15.95)
 2008-10-17 | $17.02 | (2008-10-16,$16.99)

Now, the fields of the "row" type values can be accessed, thus:

drop type if exists rt cascade;
create type rt as(day date, price money);
\pset null '<null>'

with
  v1 as (
    select
      day,
      price,
      lag ((day, price)::rt, 1) over w as lag_1,
      lead((day, price)::rt, 1) over w as lead_1
    from t3
    window w as (order by day)),
  v2 as (
    select
      day,
      price,
      (lag_1).day     as lag_day,
      (lag_1).price   as lag_price,
      (lead_1).day    as lead_day,
      (lead_1).price  as lead_price
    from v1)
select
  to_char(day, 'Dy DD-Mon')       as "Curr Day",
  price                           as "Curr Price",
  '  '                            as " ",
  to_char(lag_day, 'Dy DD-Mon')   as "Prev Day",
  lag_price                       as "Prev Price",
  '  '                            as "  ",
  to_char(lead_day, 'Dy DD-Mon')  as "Next Day",
  lead_price                      as "Next Price"
from v2;

This is the result. (Again, some rows have been manually elided.)

  Curr Day  | Curr Price |    |  Prev Day  | Prev Price |    |  Next Day  | Next Price 
------------+------------+----+------------+------------+----+------------+------------
 Mon 15-Sep |     $19.01 |    | <null>     |     <null> |    | Tue 16-Sep |     $18.96
 Tue 16-Sep |     $18.96 |    | Mon 15-Sep |     $19.01 |    | Wed 17-Sep |     $18.10
 Wed 17-Sep |     $18.10 |    | Tue 16-Sep |     $18.96 |    | Thu 18-Sep |     $18.75
 ...
 Wed 15-Oct |     $15.95 |    | Tue 14-Oct |     $17.69 |    | Thu 16-Oct |     $16.99
 Thu 16-Oct |     $16.99 |    | Wed 15-Oct |     $15.95 |    | Fri 17-Oct |     $17.02
 Fri 17-Oct |     $17.02 |    | Thu 16-Oct |     $16.99 |    | <null>     |     <null>

Realistic use case

The first example lists the daily change in stock price for the available data, deliberately excluding the case where lag() would look before the start of the window:

with
  v1 as (
  select
    day,
    price,
    lag(price, 1) over (order by day) as prev_price
  from t3)
select
  to_char(day, 'Dy DD-Mon') as "Day",
  price,
  prev_price,
  to_char((100*(price - prev_price))/prev_price, '990.0') as percent_change
from v1
where day <> (select min(day) from t3)
order by day;

This is the result:

    Day     | price  | prev_price | percent_change 
------------+--------+------------+----------------
 Tue 16-Sep | $18.96 |     $19.01 |   -0.3
 Wed 17-Sep | $18.10 |     $18.96 |   -4.5
 Thu 18-Sep | $18.75 |     $18.10 |    3.6
 Fri 19-Sep | $20.07 |     $18.75 |    7.0
 Mon 22-Sep | $19.75 |     $20.07 |   -1.6
 Tue 23-Sep | $19.69 |     $19.75 |   -0.3
 Wed 24-Sep | $19.95 |     $19.69 |    1.3
 Thu 25-Sep | $20.47 |     $19.95 |    2.6
 Fri 26-Sep | $20.62 |     $20.47 |    0.7
 Mon 29-Sep | $18.77 |     $20.62 |   -9.0
 Tue 30-Sep | $18.29 |     $18.77 |   -2.6
 Wed 01-Oct | $19.86 |     $18.29 |    8.6
 Thu 02-Oct | $19.49 |     $19.86 |   -1.9
 Fri 03-Oct | $19.48 |     $19.49 |   -0.1
 Mon 06-Oct | $18.30 |     $19.48 |   -6.1
 Tue 07-Oct | $16.78 |     $18.30 |   -8.3
 Wed 08-Oct | $16.88 |     $16.78 |    0.6
 Thu 09-Oct | $16.21 |     $16.88 |   -4.0
 Fri 10-Oct | $16.68 |     $16.21 |    2.9
 Mon 13-Oct | $18.86 |     $16.68 |   13.1
 Tue 14-Oct | $17.69 |     $18.86 |   -6.2
 Wed 15-Oct | $15.95 |     $17.69 |   -9.8
 Thu 16-Oct | $16.99 |     $15.95 |    6.5
 Fri 17-Oct | $17.02 |     $16.99 |    0.2

The second example uses conventional techniques to show the row that saw the biggest daily price change:

with
  v1 as (
  select
    day,
    price,
    lag(price, 1) over (order by day) as prev_price
  from t3),
  v2 as (
    select
      day,
      price,
      prev_price,
      (price - prev_price) as change
    from v1
    where day <> (select min(day) from t3))
select
  to_char(day, 'Dy DD-Mon') as "Day",
  price,
  prev_price,
  to_char((100*change)/prev_price, '990.0') as percent_change
from v2
where abs(change::numeric) = (select max(abs(change::numeric)) from v2);

This is the result:

    Day     | price  | prev_price | percent_change 
------------+--------+------------+----------------
 Mon 13-Oct | $18.86 |     $16.68 |   13.1
  • Example
  • lag()
  • lead()
  • Example of returning a row
  • Realistic use case
Ask our community
  • Slack
  • Github
  • Forum
  • StackOverflow
Yugabyte
Contact Us
Copyright © 2017-2021 Yugabyte, Inc. All rights reserved.